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by: A.S. Richardson, Jr.
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ABSTRACT:

The paper addresses the issue of galloping in guad-bundled
transmission lines. Recent experiences with galloping of
quad-bundled lines in the U.K. are used as a point of departure for
the study. Aerodynamic data ootained from wind tunnel studies in
England are compared to wind tunnel data obtained 25 years ago under
an M.I.T. study. The former data were obtained from models designed
from actual ice forms respaonsible for the guad-bundle gallop. The
latter data were obtazined from smooth models having sinulated tear
drop ice shapes. After adjusting for differnces in Reynolds number,
the two sets of data compare within about 10% cover a range of angle
Oof attack from minus to plus 40 degrees.

Analytical studies start from the linear egquations of motion in two
degqrees of freedom, gallop and twisting. The wind tunnel data are
approximated by analytical curves. The critical wind speed of
gallop is found to depend on damping factor in both modes, mass
radius of gyration of the bundle, mass unbalance, and especially, on
initial angle of attack. The phase of the twist motion is in phase
with the gallop velocity, and the magnitude of the twist motion
always exceeds the magnitude of the angle of attack due to gallop.
The linear studies are followed by non-linear studies which
illustrate the build up o0of gallop amplitude once the critical windé
speed 1s reached. The effects of the mass radius of gyration, the
mode damping, and the 1initial angle of attack are similar to the
linear studies.



INTRODUCTION

From the earliest times of concern for the "gallop problem’® there has been
controversy and disagreement. A consensus has never been agreed to by the
serious researchers of any given period. An example may be found 1in the
proceedings of a conference on galloping conductors, (1748). Attending that
conference were A.E. Davidson, W.F. Dobson, A.T. Edwards, J.H. Waghorne,

and others from Ontario Hydro. Alsec in attendance were, J.F. Den Hartog.

R.T. Henry, M.S. Oldacre and others from the United States. And, since the
conference was held at the National Research Council of Canada., several from
that institution attended such as F. Cheers, RaJ. Templin, and R. Ruedy.

A considerable discussion centered around the issue of the lift curve slope.
Frofessor Den Hartog expressed his famous view that the negative slope was a
primary factor in the gallop problem., while Dr. Ruedy felt that the positive
slope region was the dominant influence. With some minor modifications. the
argument continues today.

While this paper does not presume to settle the issue, the perception that
this author has is this: Negative slope regions of the lift curve are in the
usual sense of Den Hartog Galloping responsible for galloping of both sinagle
and bundled cables in light ice. In heavy ice, galloping is mostly due to the
positive lift curve slope in combination with a coupling of the gallop motion
with cable twisting. In the former case, some twisting may appear, but it 1s
not essential to the instability. Rather it is incidental to it. In the latter
case the coupling of the torsion with the gallop is most essential, and it is
easily accomplished when the natural frequencies of gallop and torsion are in
cluse prusimity. Further, in the latier case, coupling is primarily aercdynamic
as opposed to inertial. In the former case, coupling could be either. or both.

This paper examines the second kind of gallop. For simplicity, the natural
freguencies are considered almost equal. The stability of a cable span is
examined by both linear and nuwrm—i:near methods. The linear methods are put
into the same general form of Nakamura (198B0). The non—-linear methods are put
into the form of Richardson (1988). The basis of the numerical analvsis is a
system of bundled spans in the U.K. that have been troubled in recent vears by
galloping, Tunstall (1987).

Important parameters identified by the linear analysis are confirmed as being
important in the non-linear analysis. Certain aspects of the analysis can be
interpreted in terms of currently used anti-gallop measures.

rerodynamic Data

There is no doubt that aerodynamic lift is the primary cause of galloping.
While some may debate the slope if the lift curve in relation to the angle of
attack, none will guestion the role of the lift itself in galloping. One needs
only to examine the energy input to the motion of gallop. For gallop to grow
1ift must act in the same direction as the moving cable. Thus, one needs to
establish the relation between cable motion, angle of attack. and lift. Drag
is important also, because in the classic Den Hartog gallop it alone cancels
the effect of negative—going lift with angle of attack. Drag is important in
the non-linear analysis of galloping. It sets the final amplitude in the

Den Hartog type of gallop, Richardson (1988). The simplicity of the single-—
degree—of—freedom gallop is lost when only one other degree of fre=sdom is
added, such as twisting. Other parameters come into play. Here, we will make
the analysis around a fixed set of aerodynamic data. The data are replicated
by wind tunnel tests on an “actual ice shape’, Koutselous (1988). The data
are seen in Figs. (1), (2), and (3).
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The data are shown in comparison to data obtained in 1960, and reported later
by Richardson (19265). The two shapes are simlilar. The major difference is in
the Reynolds numbers of the tests. In the earlier tests a Reynolds number of
about 100,000 was used. In the recent tests the Reynolds number was in the
range of about 15,000 to 33,000. In Fig.(l) we see the lift data. The solid
curves are from the earlier tests. The max/min range of the recent tests are
indicated by the connected closed circles. In comparing the two, the higher
values of the closed circles should be favored for lift and pitching moment,
while the lower wvalues of the closed circles should be favored for drag. That
is. the Reynolds number of 33,000 is thus favored. As seen in Figs. (2) and (3),
the agreement is good. One argument used in recent years has been that wind
~tunnel data taken on smooth surface models, is not applicable to actual iced
conductor shapes. Here we have conclusive evidence to the contrarvy.

It is often convenient to fit anmalytical curves to the test data for the
purpose of analysis and study of parameters. In this case the test data of
vintage are fitted, as follows:

Lifts CL = Q.65 sin{ Tr @)asssansssansnsnasesssmees (1)
Normal Force: EN S Lol STl TV 87 B0 i i vt i v o o s i Gy
Moment: EM = 0.7 sinlliiS malisesaves sneesaasennasss ()
If: a <= 0.58&6
or: CHM = 0.4 sin{ 1 a/2)
If: a > 0.686
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Linear Coupled Equations:

The linear differential eguations of Nakamura (1980) are used as the starting
point. These are the same as the eguations of Chadha (1974), Richardson (19&63),
and others, except that inertial coupling has been omitted. It will be put back
in later. The equations are:

y’’+agy’ +y = 1/2qd U (1/mw® ) [Cha wy’/U + ClLa @J......(1)
x

27"+ Rog@® + EZQ i/2 g da UT(1/1w® ) [-Cma wy /U + Cma B1......(2)
where,

gallop amplitude

pitch amplitude

cable diameter

loss factor (structural damping)

wind speed normal to cable

density of the air & 0 deg.C

cable mass per unit lenath

mass moment of inertia per unit lenath
pitch frequency/gallop freguency
frequency of the gallop mode (rad/s)
slope of normal force coefficient
slope of lift force coefficient

slope of moment coefficient
differentiation on wt

time (sec.)
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These eguations are applicable to a continuous span if the mode shape of the
pitch motion (twisting) is the same as the mode shape of the gallop motion.
This was pointed out by Richardson and Martucelli in 19&43. Further, in a linear
system there will be no coupling between first and second modes. That is
simply a consequence of the orthogonal relationship between modes. The latter
statement does not apply when motions are large. and forces are non-linear.

A solution of the coupled equations is to be found from the following matrix
equation, after assuming simple harmonic motion at frequency, w:

L Mg + UcCDJ] i Q Ar -CLa i CLa A
= Uo e s A
v] p ra ROgi+(R =1)1||@ -Uo Cma i Uo Cma||@
R L
where, &
M =m /{1/2 gd ) relative density
ra = dimensionless radius of gyration (squared)
Uo = U/ (wd), reduced wind speed
i =441
CD = drag coefficient
Ar = reduced amplitude, scalar., (=WwY/U)
2 = vector pitch amplitude, (Magnitude=Q&o)
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Fig. (7) Orientation of Vectors
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Reference may be made to Fig.{(7) to see the orientation of the vectors.
Notice that Ro*Ar is a condition for gallop when CLa>0 AND R#1. The careful
reader will verify that this condition must be satisfied if the energy flow
from the wind to the conductor is positive. Clearly, this is a consequence of
fundamental mechanical principles. On the other hand, when CLa<0, then the
condition, Qod<Ar applies. In general, Qo may be interpreted as the magnitude
of the vector of @ that is in phase with the velocity of the gallop.

When the dynamic analyses are considered, the phasor diagram may be used to
obtain motion magnitude, phase, and other information. In general, the
linear problem involves a separation of variables into real and imaginary
parts, and an iterative process that leads to relations between damping (gj,
and reduced wind speed Uo. Many hundred solutions of the parameterized
system were reported in an earlier study, Richardson, (19&3).

The solution of the linear eigenvalue problem is found from the determinant
ey pression,

{(G + CLali -CLa
= Q0 o e )
Cma 1i H¥x — Cma

where,
6 = ( Fg/Ua) + CD

= '?.. T
Hx = F\'(f.lg ra /Uo )i _F(I_R Jra /Uo

It is noted that all of the above equations follows closely the derivation of
Richardson and Martuccelli (1965). Alse, in that study, it was proven that the
analysis, though seemingly restricted to a lumped parameter model, does in
fact apply to a continuous span, having distributed properties.

The parameters for the subconductor are seen in Table 1.
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Item Numerical Value
Configuration Quad = 4 (square)
Span 2S55Sm
Spacers 0.305m and 0.508m
Conductor diameter 28.6mm (400mm2)
Conductor strands S4/7 ACSR
Sag @ Odeg.C 10m
Natural Frequencies:

ist mode gallop 0.169 Hz

lst mode torsion 0.244 Hz

Znd mode gallop 0.349 Hz

2Z2nd mode torsion 0.3865 Hz

(calculated frequencies are with no ice or wind)

Ice Shape

Model no. 2 (Tunstall & Koutselos)

Mass of ice 0.3 kg/m

Total mass 2 kg/m

Conductor Tension (no ice) 28.2 EN
C.G. offset (%) 7

I
Il

A study of Equ. {(4) for the parameters of the CEGB cable indicates that the
transfer function, Bo/Ar, is of order unity with phase zero. In other words, a
pitch angle driven by the reduced angle of attack, —Ar, is in phase with the
gallop VELOCITY. Indeed, an examination of vector phasor diagrams indicates
that pitch angle magnitude, Qo, must be greater than Ar when the freguency
ratio R™1. Otherwise energy will not flow into the gallop motion from the
aerodynamic lift force. Drag force always soaks up energy. as may be seen

from the left hand side of Eq.(3), where it adds algebraically to the loss
factor mug in proportion to wind speed. Earlier solutions of the equations;
also included a 10%Z offset C.6., and an initial angle of attack of plus or
minus 70 degrees. These are reproduced in Fig.(8). Notice that the plot of
wind speed is referred to the pitching (torsion) frequency, which also in-
cludes a ratio R=1l. Also, notice the effect that large increases in radius. of
gyration has; namely, it INCREASES the stability. However. when the freguency
ratioc, R is near unity the stability is decreased. The damping shown in Fig. (8)
is the damping required to satisfy the determinant, Eq. (4), but including the
effect of 10% offset C.G. The numerical values of Fig. (B8) do not apply to

the CEBE conductor. The moment of inertia, ra . for the CEGB conductor is
about 56, 152 respectively. The mass relative density is about the same(™~3I000),
and the offset C.G.(7%) is less. Further, the initial angle of attack appears
too high for the bundle of four because of bundle stiffness. There is expected
to be a large influence of initial anale of attack.

The above natural freguencies were computed by Tunstall and Koutselos for a
twin bundled conductor. They are used here as a working tool to establish

a certain realism for the analysis. However, later a more accurate estimate of
the natural frequencies for the quad bundle is given.

It will be noted that the equations previocusly derived are quite general in
scope, and can be applied to any number of sub—conductors — including a single-
by an appropriate selection of frequency ratio (R), and mass radius of gyration
squared, ra {normalized on the diameter, d).
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STABILITY BOUNDARIES FOR MODEL NO.2 FOR DIFFERENT\my RATIOS
FROM THREE-DEGREE -OF-FREEDOM CALCULATIONS

A study was conducted, using Eqg. (4) as basis, to determine the effect of the
initial angle of attack. The results are seen in Fig. (9). The numerical wvalues
for the two curves are seen in Table 2.

TABLE 2. Numerical Values for Fig. (9)

Farameter Curve Label (0) Curve Label (z)
radius of gyration, ra Sé 152
gallop mode damping, g J00 200
torsion mode: p (R™-1) 248 248 (g=0)

The figure shows the reduced wind speed, Uo, a abscissa., and the initial angle
of attack as ordinate. Scales are respectively, 0-300, and 0-40 degrees.

When the wind speed parameter exceeds the critical wvalue, gallop occurs for
the CEGE conductor. In the case of the .305m spaced bundle the critical wind
is Uo = 70, while for the 0.508m bundle it is Uo = 135, almost double. In both
cases, a significant benefit is available if the initial angle of attack is
increased_ to 20 degrees or more. The critical wind soeed values for the res-—
pective cases. and for the double loop gallop are: 4.45 m/sec and 8.99 m/sec.
An initial angle of attack of only 20 degrees will almost double these figures.
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The numerical values in Table 2 taken with Fig. (9) illustrate the favorable
effect of the larger bundle. Also, the numerical value of mode damping in the
gallop mode, though smaller in the case of the larger bundle, is offset by the
favorable effect of large radius of gyration. These effects are present even
though the frequencies are nearly matched. The numerical value of the torsion
parameter o (R;-1)=24G, translates into a frequency mismatch less than ten
percent in both cases. Thus, while frequency ratio is important, it is not the
only thing that is important. The damping ratio in the gallop mode is large

by most standards. The g damping is just twice the damping ratio, so the
numbers translate to a damping ratio of about S%. It is apparent that damping
of the gallop mode alone will not be completely effective. The initial angle
of attack effect seems to work in both cases.

Offset C.G. Added:

Thus far, we have neglected the C.G. offset due to static unbalance aof ice.
If it is included, it is added to Equ. (3) on the diagonals of the matrix on
left side of the equation. Inertia coupling terms equal to ME where E is the
offset C.G. distance divided by the conductor diameter, or —-0.07 in this case.
The minus sign is used when the offset distance is on the windward side, and
a plus sign is used when the offset distance is on the lee side of the con-
ductor. When this effect is included in the equation, the effect of it is
seen in Fig. (10), when the C.B. is on windward side. The curve label (0) is
the same as the curve label (z) in Fig. (9), and apply to the conditions of
the Table 2. The curve label (y) applies to the —-0.07 offset. It is seen to
increase the critical wind speed from Uo=135 to Uo=200.

6.8
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It is of interest to compare these results with offset C.G. on the lee side of
conductor. The results for that case are seen in Fig. (11), and again the con-
ditions under the (z) label of Table 2 apply, except for the C.G. offset. The
numerical values of C.G. offset in Fig. (11) are: y=+0.07, 2=+0.14, & 4=+0.2B.
Increasing the C.6. offset when it is positive reduces the critical speed, Uo.

. Comparing the two figures, it is seen that the normal situation where ice

accumul ates on the leading edge, or windward side, is helpful. This is not the
reason that unbundling of bundles is helpful, however. The reason that the
wind—-side offset C.G. helps is the same reason that a forward location of the
center of gravity helps to prevent wing flutter in airplanes. It is the same
reason that wing—mounted engines are mounted forward of the wing twist axis,
rather than back of it. It is a well known strategy to the flutter analyst.
However, in the case of a bundled conductor, there is no way that the strategy
could be exploited because there is no way of adding offset weight that will
always be to windward. Calculations which show the effect of offset C.G. are
illustrated in Table 3. Again, the conditions of Table 2 apply.

TABLE 13 Effect of C.G. Offset

ra = S& (ug1=300) ra = 152
Uo ME Uo
130 -22 210
200 -450 290
>500 -&675 >S00
70 +22 130
&0 +575 100
S0 +1000 20
S50 +2000 70
50 +3000 70
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Coupled Modes:

The idea of increasing the C.B. offset to the point that the two modes couple
was examined. This was done by dropping all damping terms and aerodynamic terms
from the equations (3), while retaining all inertial terms including the pE
terms. The results of this study are seen in Figs. (12)-(14). The effect on

mode frequency is seen in Fig.

The abscissa is modal natural

(12). The ordinate is .[E on a scale of 0 to 3.
freguency on a scale of 0 to 0.4 Hz. The z symbol

is the "gallop mode branch® while the x symbol is the “twisting mode branch?®.
Notice that both first and second mode frequencies separate, or become detuned,
as the offset inertia is increased. This is a well—-known effect in dynamical
systems that couple inertially. The spreading, or detuning is greater when the
two frequencies are initially close together. Here the first mode has R=1.4,

while the second mode has R=1.

044, Figure (13) shows the eigenvector for the

first coupled mode. The units are radians per unit diameter of the gallop mode

displacement. The scale is, on

the ordinate 0-3 units of .E. and 0-0.4 units

of eigenvector. on the abscissa. The two branches gallop (z) and twisting (x)
approach an asymptote equal to the inverse square root of ra. Here, we have
taken ra=Sé6. This asymptote is seen clearly in Fig. (B) for the second modes
The reason that the second modes couple more easily is because they were close

to begin with. In either case,

a large amount of inertia is required to bring

the two modes together. An offset of two diameters of the bundle C.G. is
about 30 times the offset associated with ice (=0.07).

Why would anyone want to introduce such a large offset, on purpose? With
reference to Table 3, such a large offset will increase the critical wind
speed only when the wind is on the same side as the offset. It it is on the
opposite side, the critical wind speed is reduced, and there are few areas in

the world that one could rely
tion against gallop. There is
a one—sided offset device for
later, after some fundamental
into the analysis.

on the one—-sided offset arrangement for protec-
another reason why one would seriously consider
gallop control. That reason is to be explained

ideas about non—-linear aerodynamics are brought
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Non—linear Analvsis:

The previous analvyses have indicated several conclusions: (i) large values of
the radius gyration (moment of inertia) are desirable in terms of increasing
the critical wind speed for gallop, (ii) initial angle of attack of the ice
shape different from zero. and especially larger than 20 degrees, is desireable
in terms of increasing the critical wind speed for gallop, (i1ii1) increasing

the C.5. offset in the windward direction is helpful to increase the critical
wind speed of gallop. but increasing the C.G. offset in the lee direction is
not helpful.

These trends are limited to the analysis of bundled cables, where, amoung
other things the natural frequencies of gallop and twisting modes are close,
and the moment of inertia of the system is more than 100 times larger than
the moment of inertia of a single cable. Further, the analysis has included
mostly aerodynamic coupling through the moment and lift coefficients. Inertial
coupling has been identified, but little has been done about it, vet.

There is another interpretation that can be given to the equations of motion.
The interpretation is as follows: (with reference to Eqg. (3)).

Ar = [Uo/{ pg + UOCD)J % CLBO=AF) eaeeernnenns (6)

=3 ~
Qo = [Uo/( pubDra 1 x CmQO-Ar).cccceavecensea. (7))
where,
CL(Qo-Ar) = Lift describing function
Cm(Qo-Ar) = Moment describing function
D = R -1

Under the assumption that R™1, pitch motion is in phase with the gallop
velocity. As already noted. the pitch motion must ALWAYS generate {crcqg in
phase with gallop velocity when lift slope is positive. The functions, CL & Cm
are the Describing Functions for the simple harmonic motion, Richardson., (1988)
They are the equivalent Fourier series components for the lift amd moment

wave forms at the gallop frequency. Here, they are scalar quantities, for the
particular lift and moment curves, they are found to be:

ot
0
N
Il

1.3 J1Uf Z)eecnccnscnnnccannsasnas(B)

0
o
N
S
[

1.4 J1€1.15 497 Z)icacsvonsnsssnnna (P

The J1 functions are the Bessel functions of the first kind. of order unity.

The above formulation is based on work already published, Richardson (1988),
and employs a central assumption with regard to Eg. (3)3; namely, the drag
coefficient is assumed constant over a cycle of vibration. 0OFf course, the
usual assumption that R™1 applies. This is seen to be reasonable from Table 1.

The solution of the non—linear problem is found from Eg. (B) and (%?) by
subtracting Eq(é) +from Eq. (7):

Z = F{ZI)leveaesounossssnsennsssnsannssn{iQ)
and , Z = Qo-Ar
=3
F(z) = ([Uo /(pDralx(1.4)xJ1(1.15m z) - [Uo/(ug+UoCD)Ix(1.3IxJ1( ar z)



The above formulation is for the case of zero initial angle of attack. When
the initial anale of attack is not zero., the describing functions are no
longer scalar guantities, but are vectors. However, only that part that is
in phase with the gallop velocity is of interest. It has a diminished level
owing to the phase shift of the lift or moment away from gallop velocity.
The dimished level is accounted for by a cosine multiplier function:

CsL
CSM

costw Bo )eeswesessseswews {ELY
cos(1.15 a7 Bo Z)acevsaacana i)

For lift (initial angle=Bo):
For moment:

The solution is illustrated in Fig. (15). The conditions are: curve x is

for Uo=200, curve q is for Uo=150. The plot is F{(Z) and the straight line is Z.
The scale is 0-1 on both abscissa and ordinate. The intersections are indicated
by hexangonal boxes. These are the solution points for Z. Once a solution point
is found. that is used in Eg. (&) to find the correct value for the reduced
angle of attack, Ar. A set of solution points is seen in Fig. (1&8) for values of
gallop mode damping, mug=300; detuniné parameter, pbD = 150,. and for the radius
of gyration (squared) S&. The latter corresponds to the smaller quad spacer
of Table 1. The lower curves are the reduced angle of attack, the upper are the
pitch angle, Bo. The abscissa scale, Uo, runs from 0 to 300, and the ordinate
scale from O to 3 radians. Other values of the three principal parameters are
seen in Figs. (17) through (19). The trend is the same as the linear analysis;
namely, large moment of inertia is helpful., large pitch frequency is helpful.
Finally, the effect of initial angle of attack is seen in Fig. (20). The
conditions are: gallop damping, mug=300, detuning parameter, uD=300, a Sé.
The curve labelled C is the pitch angle with zero initial angle, as is the
curve labelled "a’, which is the reduced angle of attack. The curve labelled

by A" is the reduced angle of attack vs. Uo when the initial angle of attack
is equal to ten degrees. The two curves labelled X, and » are respectively, the
pitch angle, and the reduced angle of attack. when the initial angle of attack
is equal to 25 degrees. The latter curves fall below 0.2 radians for all

wind speeds considered.
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The effect of initial angle of attack in the non-linear analysis agrees with
those trends found in the linear analvsis: namely, large 1initial angle of
attack is beneficial. Alsc, the trends from the non-linear analysis

relating to the effect of radius of gyration agree with the trends from the
linear analysis; namely, a large radius of gyration is beneficial. It is

to be noted that the latter conclusion was found by Richardson and Martuccelli

nearly thirty years ago, Richardson, (19&5).

The effect of pitch freguency ratio may be separated from the effect of moment
of inertia., by comparing Fig. (17) with Fig. (18), by comparing Fig. (18) with
Fig. (18). It seems clear that the radius of gyration is more powerful than
pitch freguency as to its effect on critical wind speed. Similarly, by
comparing Fig. (1B) and Fig. (19) it seems that gallop mode damping has little
effect on critical wind speed, but it does diminish the gallop amplitude
somewhat. However, as in the case of the linear analysis, the most dramatic
reductions come from large effect of initial angle of attack. In particular,
it is pointed out that the large reduction of gallop amplitude due to that
effect pervades the wind speed range from very low critical wind speeds.

This gives a clue concerning the use of large offset inertia as a control
mechanism for bundle gallop.

— 3 -
- C C
L ¢ N Cc
L : N C
R c
" C B C
o € C L
K ¢ L ¢ , @
- C -~ C a 2
& C 3 a B C 4 :
E c ¥ N 3 3
: ) : ¢
s t :
C a - caa
L 3 C a
O- - L - E - - - 0 l"_ L | GE L
U, 300 U, 300
Fig. (17) Non-linear Gallop Fig. (18) Non-linear Gallop
pe = 300, pD = 300 ra=56 pg = 300, uD = 150 , ra=152
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The detailed analysis of the large inertial unbalance must await another time.
It is known from the coupled mode analysis that large “doses® of inertial un-—
balance are at once beneficial and detrimental, depending on where the un-—-
balance is with regard to the wind. The coupled mode eigenvectors are out of
phase by 180 degrees, and either in phase or out of phase with regard to maodal
displacement. This means that the combinations of phasing that favor gallop -
that is produce net lift forces in phase with gallop velocity — are limited to
a finite range. Further, no coupled mode can gallop without twisting, and vice
versa. Here are the ingredients for some clever design procedures that could
increase the stability of the bundle. One thing that might be practical is to
simply rotate the existing detuner pendulums on those lines that have galloped.
A rotation of 90 degrees would produce a large inertial offset. If the offset
is favored towards the wind side, so much the better. Another possibility is
to hang weights on one side of the bundle that attach to the subconductors,
both top and bottom. One should be careful not to add so much weight that the
bundle would pre—twist to an undesired angle. These and other ideas require a
detailed study to see if they might be practical.
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Discussion:

The non—-linear analysis gives results that are consistent with the linear
analysis. In both cases, damping in the pitch mode has been neglected. In the
non—linear analysis four effects are studied. The damping in the gallop mode
has little effect on the critical wind speed. The radius of gyration in pitch
of the bundle has a major stabilizing effect. Larger bundles give consistently
higher critical wind speeds. The initial angle of attack, if large enough is
capable of two important positive effects, (1) increasing the critical wind
speed, and (Z) reducing the amplitude of gallop. The bundle detuning has an
observable effect. This last conclusion is supportad by the range of detuning
from S to 19 percent, {(muD parameter from 130 to 300 ).The actual calculated
natural frequencies, based on the larger spacer (0.508m) for the 355m span
are: first mode gallop = 0.16%9Hz, first mode twisting = 0.178Hz, second moade
gallop = 0.34Hz, second mode twisting = 0.3&62Hz.

In the larger bundle, if detuning pendulums are added to the bundle at spaced
distances of 0.2, 0.33, 0.38, 0.75 along the span, then these frequencies are
changed. The two gallop modes are unchanged. but the twisting frequencies
become respectively: first mode = 0.25Hz (R=1.4) and second mode = 0.42Hz ,

and R=1.23. These calculations were based on an assumed cosine shape and an
assumed sine shape respectively, along the span. Referring to Fig. (1B)., we see
that the large bundle has been examined for relatively small detunings (D=0.05)
and the finding has been favorable for the larger bundle. But, in the smaller
bundle, the detunings are even greater by twice as much (D=0.1) - see Fig. (17).
Yet., the critical wind speed is less. It appears that additional studies are
required to separate the effect of higher detunings on the larger bundle.

CONCLUSIONS:
o The gallop of a quad bundle based on an actual Central Electricity Generating
Board (CEGB) transmission line has been studied by parametric analysis.

0 A linear analysis has shown that large bundles are less likely to gallop than
small bundles. A non—-linear analysis confirms that conclusion.

o A linear analysis has shown that large initial angles of attack increases
critical wind speed at which gallop begins. A non-linear analysis confirms
that conclusion, and also indicates that large initial angles of attack reduce
the gallop amplitude.

o A small bundle with a high detuning ratio develops a laower critical wind
speed than a larger bundle with a smaller detuning ratioc. Detuning ratios are
either Si or 10%. Additional studies are required to sort out these effects.

0 A forward location of the C.B6. is beneficial. An aft location is not. A

study of the coupled modes resulting from very large offset C.G. devices may
lead to new anti-gallop devices.
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