PREDICTING GALLOPING AMPLITUDES

By A. S. Richardson, Jr.!

Asstract: The use of wind tunnel data, lift and drag, together with a
method of analysis, leads to estimates of gallop amplitudes. No damping
1s considered. The nonlinear analysis is similar to the describing-
function method used in control system design. The method is con-
venient to use because it can account for effects of Reynold’s number
directly. Two bluft body shapes are chosen to illustrate the prediction
method. The first shape is the square section. This is also compared with
earlier results. The second shape is the simulated ice shape on a round
conductor. The results compare favorably with previous work.

INTRODUCTION:

A number of papers have appeared during the past decade that have
dealt with the important goal of predicting galloping amplitudes. Mukho-
padhyay and Dugundji (1976) reported on experiments and theory for a
galloping cantilever beam in two degrees-ol-freedom having a sguare cross
section. Later, a method of predicting galloping exposure of transmission
line spans was reported (Richardson 1982). In 1983, the maximum ampli-
tude of galloping cables was considered by Ericsson (1983), Recently, the
galloping amplitude prediction method (Egbert 1985) has used a control
analysis method known as the describing function.

‘The purpose of this paper is to draw from the earlier prediction methods
certain comparisons and to explain a more generalized technique in this
instance. Especially, there is found to be evidence of Reynolds number
effect on the aerodynamic lift, but little effect on the aerodynamic drag.
The technique introduced here shows how to account for such effects in
the prediction of galloping amplitude.

GENERALIZED DESCRIBING FUNCTION

The galloping of cables, conductors, beams, masts, etc. is the result of
negative aerodynamic damping associated with negative slopes of the
normal force coefficient with respect to angle of attack (Parkinson 1965),
and while damping is a function of wind speed, a certain minimum wind
speed is required to overcome the mechanical damping. Above that wind
speed, the galloping amplitude grows at a rate in proportion to wind speed
or at a constant dynamic angle of attack. The numerical value of the
constant dynamic angle of attack is crucial to the correct prediction of the
galloping amplitude. Thus far, the prediction methodology has relied on
the somewhat tedious curve-fitting of the aerodynamic normal force
function and the establishment of a steady state oscillatory “gaHOpmg
condition.™
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The energy input from the wind 10 any system undergoing cross-wind
oscillation in a single-degree-of-freedom is found by integrating the com-
ponents of lift and drag over a complete cycle:

qA dy .
E= f (CL cos a + Cp sin a)x—d——xd(ﬂz) ................ ()
where ¢ = dynamic pressure; A = reference area for the coefficients C,
and Cp, 5 {} = radian frequency of the oscillation; « = instantaneous angle
of attack; y = vertical dynamic displacement; and ¢ = time. The instan-
taneous angle of attack and the displacement are related: dy/dr = —QY
sin{)¢; and o = g sin{l. '

It is seen that the angle of attack and transverse velocity of motion are
out of phase (180°). It is precisely this connection that leads to the Den
Hartog criterion, i.e., when the slope of the lift coefficient versus angle of
attack is negative and is more negative than the drag coeflicient is positive,
then instability is possible. This applies to small dynamic angles of attack
(@ < 1), however. If large dynamic angles of attack occur, such as for
values of the a-parameter near unity, then nonlinear behavior of the
aerodynamic coefficients C; and Cp, become evident. In general, this
means that both C; and Cp are best represented by their Fourier series
components in the interval of one vibation cycle. For large values of «,
many harmonic terms may be required to accurately represent the coef-
ficients.

‘The simplest representation is to assume Cj, constant and €, as

CL=Cy+SysinQr+C cosQr........ b eosmormerme = o = & ro——__ )

where Cy, §,, and C, = the Fourier coefficients.
Under that simplifying assumption the energy input per cycle to the
oscillation is found by substituting Eq. 2 into Eq. 1 as follows:

(;II}; ‘”S](Jg'—fg)“?,CDfl .............................. (3)
Whenever E > 0, energy is taken into the system from the wind, causing
the system to vibrate at larger amplitude. Whenever E < 0, energy is taken
out of the system by the wind, causing the system to vibrate at lesser
amplitude. The balance condition wherein no net energy flows 1o or from
the wind is the limit cycle oscillation. The equation is the nonlinear
equivalent of the Den Hartog criterion, when E = 0.

To see this, put the left-hand side equal to zero, and consider only small
amplitudes. In that case, $, = (dC /da) aand Jy, = 1;J, = 0.5 ¢; and J, =
0 (Janke 1945). Therefore, 0 = dC, /da + Cp . This is recozg,mzed as the Den
Hartog relationship or criterion. When the left-hand side of Eq. 3 is put
equal to zero, a single transcendental relationship results with two par-
ameters, the peak angle of attack « and the parameter R(g) defined by

R(G)Jl(a) = Jg(ﬂ) = Jg(a) ................... I —— (4)
where
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The parameter S, is the first Fourier series component of lift coefficient
and is to be determined from the Fourier analysis of static wind tunnel tests
for the particular bluff body shape. Clearly, from Eqgs. 3 and 5 the Fourier
variable §, must be negative and numerically greater than the drag
coefficient for a solution to exist.

SqQuARE SECTION

The galloping of the square section cylinder has received much attention
in the literature. The lift and drag coefficients were measured under the
study by Richardson (1965) and repeated here as Fig. 1. The data may be
converted 1o the dimensionless force coefficient. These tests were made at
relatively high Reynolds numbers, compared with Mukhopadhyay (1976).
While the shape of the lift and drag curves are comparable, the maximum
lift coefficients differ by a factor of two. Drag coefficients are comparable.
Reynolds numbers differ by an order of magnitude.

To illustrate the use of Eq. 4, four numerical values for pcak dynamic
angle of attack are assumed, zero, 20, 26, and 30° The drag is fixed at the
average value of Cp = [.72, while the Fourier term §, depends on the angle
of attack maximum. A sample of the wave form of lift coefficient is shown
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FIG. 1. Square Section Wind Tunnel Data
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TABLE 1. Comparison of Galloping Results for Square

(a) max Reynolds number
Investigator (deg) range
. (1) (2) (3)
Dugundji et al. 15-22 1,800-3,100
Parkinson et al. 16 5,000-20,000
Ericsson (limit case) 21 . Not specified
Richardson et al. 23 100,000

in Fig. 2 for a one-quarter cycle. While five harmonic components are used
to reconstruct the wave shape, only the first component (§,) is of interest
here. The reason that such an approximation is permissible is simply
because the system may be lightly damped (mechanically) and thus serves
as a low-pass filter to higher harmonics of force. The graphical equivalent
of Eq. 4 is shown in Fig. 3. The intersection of the two functions defines
the stable imit cycle for angle of attack. Once the angle of attack is known,
the peak dynamic amplitudes may be calculated from the frequency and
wind speed. It is of interest to compare the results of the various
investigators (see Table 1).

The prediction technique here illustrated could be used to modify the
Fourier component .S, by reducing the maximum lift coefficient according
to the Reynolds number of interest. This would result in a smaller
predicted (a)max.

lcep CONDUCTOR SHAPE

While the square has been extensively studied in the literature, an
abiding concern exists for the practical consequences of galloping on iced
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overhead power line conductors. If acrodynamic data are available for
such shapes, the same technique may be applied to estimate maximum
dynamic angle of attack.

Fig. 4 is an illustration of recent wind tunnel tests performed in Holland.
The simulated ice shape is seen to comprise a zero thickness layer on half
of the conductor. There is a strong effect of Reynolds number on the lifi
coefficient and a lesser effect on the drag coefficient (Hack 1981). Fig. 5
shows other results of a lightly iced conductor (Richardson 1986). The
Reynolds number is about 100,000. The thickness of simulated ice is 10%
of the conductor diameter, No strands are included, as in Fig. 4.

Both of these aerodynamic shapes mav be readily studied by the present
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720



<1munu|c PRESSURE - 1.828 LBS/FT?
.4 1.4 REF, DIAMETER ~ 0,417 FT 3.5
VELOCITY - 40 FT/SEC
L3 .2 3.0
L2 1.0 2.5
Lt 0.8 2,0
Lo 06 1.5
DRAG LIFT u:ogt-:m
0.8 04 .
(LBS/ET) (LBS/FT ('N LBS}
08 0.2 MOMENT 0.5
0.7 Q Ef‘ :7"-'2” 4]
0.6 =02 L A\_ DRAG e} -0.9
0,5 =04 LIFT -1,0
0.4 =06 -1.8
Pt D)
TP FERSRNY I
0O 20 490 60 B0 Q0 120 40 180 18O

ANGLE QF ATTACK (%)

FIG. 5. Aerodynamic Characterlistics of Light Ice

method. In the case of the half-smooth conductor, this appears to be a
“hard oscillator’™ such as the D-section shape. Some initial mofion is
required to get it over the angle of attack threshold. Once that initial
motion is supplied, the lift wave form can be approximated by a square
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wave with dead bands. Such wave form may be readily broken into its
Fourier components, and the §, term used in the analysis.

Many reports of galloping conductors have stated that very little ice is on
the galloping wire, often only a few millimeters in thickness. Yet, as may
be seen from the Fig. 5, there is a band of angle of attack over which the
lift changes dramatically. This is sufficient to sustain the large amplitudes
of gallop that have been observed and reported (EPRI 1980).

The analysis of the Fourier components proceeds from the specification
of the wave form, Fig. 6, but only the first harmonic is retained as before.
Then a number of different values for the (a)max are identified and the
curves are plotted representing Eq. 4. This procedure leads to Fig. 7. The
final value of (a)max represented by the intersection of curves is a = 31°,.
Ericsson (1983) found a numerical value of @ = 32° for the maximum
possible gallop.

CONCLUSION

This paper has illustrated a convenient means to estimate gallop ampli-
tude based on known or estimated aerodynamic lift and drag coefficient
data. It appears that when the Reynolds number has an effect on such data,
the method can easily accomodate such effects without resorting to lengthy
and tedious curve-fitting procedures. The effect of mechanical damping
will be studied in a future paper.

Appenpix |. BesseLL FUNCTIONS

TABLE 2. Bessel Functions Used in Analysis

ARG 2 i 1y
(1) (@) 1)) (4)
0 0 ] )

0.1 0.0499 0.996 0.997
0.2 0.0995 0.986 0.99
0.3 0.1483 0.966 0.977
0.4 0.196 0,941 0.96
0.5 0.2423 0.908 ' 0.938
0.6 0.2867 0.869 0.912
0.7 0.329 0.823 0.881
0.8 0.3688 0.771 0.846
0.9 0.4049 ¢.712 0.807
1.0 0.4401 0.6502 0.7652
1.1 0.4709 0.583 0.719
1.2 0.4983 0512 0.671
1.3 0.522 0.437 0.62
1.4 0.5419 0.361 0.568
1.5 0.5579 0.279 0.511
1.6 0.5699 0.199 0.453
1.7 0.5778 0.116 0.397
1.8 0.5815 0.033 0.339
1.9 0.5812 : —-0.048 0.281

Note: From Jahnke and Emde (1945).
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Appenpix JIl. NoTaTion

The following symbeols are used in .:hz's paper:

A = reference area for aerodynamic coefficients;
a = peak sinusoidal angle of attack;
Cp = drag coefficient;
C, = [lift coefficient;
C(J = constant term in Fourier expansion;
C, = (€, cosine term in Fourier expansion;
E = energy input per ¢ycle from wind;
Jof1 JJo = Bessel functions of first kind:
g = wind dynamic pressure;
R = ratio, drag coefficient to Fourier lift coefficient;
§, = first Fourier lift coefficient for dynamic hift;
! = time;
Y = maximum vertical dynamic displacement;
y = vertical dynamic displacement;
o = 1Instantaneous dynamic angle of attack; and
{} = radian frequency of simple harmonic motion.
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