PREDICTING GALLOPING AMPLITUDES: II
By A. 8. Richardson, Jr.’

AsstracT: The application of wind wnnel data to the caleulation of vibration
amplitudes includes the effect of structural damping. The linear theory is also re-
viewed and compared to the nonlinear theory. The asymptote for a vibration lim-
ited only by aerodynamic drag is approached when the system damping is near
zero. The limit cycle predicted by theory is compared with the limit cycle found
in wind tunnel tests. The agreement is good. Additional effects of span distribution
are identified for further study. The role of mechanical system damping is shown
to diminish as the wind speed increases above the critical wind speed. The critical
wind speed is the same no matter which theory, linear or nonlinear, is used. An
approximate describing function is introduced in closed form, which is based on
maximum lift and lift reversal angle.

INTRODUCTION

The first part of the paper (Richardson 1988) is a description of the gen-
cralized methodology and some practical illustrations of its use. For sim-
plicity, that part did not consider the effect of structural damping. The am-
plitude limit cycle is the result of energy balance by aerodynamic means. It
is a nonlinear version of the more familiar (linear) den Hartog criterion.

All structures have some finite structural damping. The quantitative mea-
sure of it is: (1) Log-decrement; (2) loss factor; or (3) damping ratio. All
are linearly related in the ratio 27 to 2 to unity. In the galloping of a single-
degree-of-freedom system, linear theory has shown that the damping and the
critical wind speed are proportional. The so-called Scruton number has also
been identified as mu-g by Richardson (1963) and reduced damping by Par-
kinson (1963). The parameter is nondimensicnal. It is the product of “rel-
ative density” by damping. The relative density is the ratio of a unit mass
of the vibrating member to the mass of displaced air (or water) having the
same volume as the unit mass of the vibrating member.

it most cases, the mu-g parameter may be interpreted as “the minimum
damping required for stability” (Richardson 1963). It is a function of aero-
dynamics; initial angle of attack; and in the case of multi-degree-of-freedom,
a function of frequency ratio, radius of gyration, and center of gravity off-
set. None of the multi-degree-of-freedom effects are considered here. The
only additional effect considered is the effect of structural damping, mu-g.

ANALYSIS

An ilustration of the effect that damping has on the stability of the D-
section shape may be seen in Fig. 1. This is based on the linear analysis.
It 1s clear that two regions of instability exist, one near the initial angle of
aitack g = 27°, and the other near a; = 90°. An instability at o, = zero
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FIG. 1. Stability Boundary for D-Section Based on Single-Degree-of-Freedom
(Vertical) Analysis

degrees exists only if an initial displacement is given to the vibrating mem-
ber, while the two shown in Fig. | actually did start from rest. The bands
of instability are limited by finite damping. If the mu-g reduced frequency
product exceeds 0.5 at the low angle of attack, or 0.9 at the high angle of
attack, no instability (galloping) is predicted. Thus, while the den Hartog
criterion correctly predicts the range of instability in terms of the angle of
attack, it remains for the mu-g reduced frequency product to identify the
wind speed. The wind speed thus identified is called the “critical wind speed,”
because it is the lowest wind speed at which galloping can occur.

Once the critical wind speed is exceeded, it becomes necessary to consider
non-linear effecis—otherwise, linear theory predicts infinite amplitudes, even
with finite damping. The nonlinear effects considered here are only within
the range of the (nonlinear) lift curve versus angle of attack. Further, for
simplicity, initial angle of atiack is considered zero, and the bluff shape is
symmetrical about «, = 0. Shapes that qualify are: (1) The square; (2) the
iced conductor; (3) the figure eight. The first two were studied in Part I
(Richardson 1988).

The generalized methodology is not limited to these shapes, of course,
nor is it limited to the initial angle of attack o, = zero. Many other bluff
shapes may be of interest (see Richardson 1986). Other initial angle of attack
cases can be treated as well, though the mathematics gets somewhat in-
volved.

The energy input from the wind to any system undergoing cross-wind
oscillation in a single degree of freedom is found by integrating the com-
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ponents of lift and drag over a complete cycle (Richardson [988)
gA Lo dy
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The symbols are identified in Appendix I
The instantancous angle of attack and the displacement are related
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It is seen that the angle of attack and transverse velocity are out of phase
by 180°. It is precisely this connection that leads to the den Hdrtog criterion
(Richardson 1963).

According to Part I, the drag coefficient is constant during a complcte
cycle, but the lift coefficient is represented by

G = S SIM () 1o i oei it e e miie sieie ms o ms oisie saie ss sien mrie siee bk s e bt aia 4
Eq. 4 has employed the condition of bluff body symmetry about the initial
(zero) angle of attack.

If it 1s assumed that the lift curve is itself a sine curve centered on the
initial (zero) angle of attack

o [ w
Cp = —A, sin (.__) ............................................. (5)
Ay .
T
Cp = —A,, sin ]:(-—) (a sin Q—t):I ................................... (6)
ag
And, by definition of §; (the “describing function™)
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m™ 0 dy

But the integral (on X) is identified in closed form as the Bessel function of
the first kind, J, (Jahnke 1945), and “the describing function,” S, becomes,
simply

ma |
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20

This can be applied to any symmetrical bluff shape, provided the lift curve
can be characterized by the two parameters A, and ay, which are, respec-
. tively, the C, max and the lift reversal angle of attack. The C, max is sen-
sitive to Reynolds number, as noted in Part 1 (Richardson 1988). The Cp is
not so sensitive, nor is the lift reversal angle, «,. It is noted that the initial
slope of the lift coefficient, given by —A,w/(ay), must be numerically larger
than the drag coefficient, C,. Otherwise, no gallop is possible.

Having simplified the right hand side of Eq. 1, the left hand side—{rom
Part I (Richardson 1988)—is seen as follows:
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where the S, is to be interpreted as previously derived, in Eq. 8.

When £ > 0, energy flows into the system from the wind. Only the in-
ternal structural damping can absorb it (in the absence of any vibration
“dampers”). The absorbed energy in a vibrating single-degree-of-freedom
system 1s just equal to two times the log-decrement times the maximum
system kinetic energy. Many classic textbooks may be consulted to verify
that truth (Simiu 1986). The system kinetic energy is one-half times the
generalized mass times the square of transverse velocity, dy/dr. By making
use of the relations between transverse velocity and angle of attack, the
expression (Eq. 9) becomes

7 i
(Zﬂﬂa)(g) = ‘"(;) [31(Jg - Jg) + 2C5JJ.1] .......................... (10)

This equation provides the basic relationship between damping (log-decre-
ment), & (relative density) p, reduced frequency (fd/U/), and aerodynamic
parameters characterized as C, max = A, lift reversal angle (q,), and the
limit cycle, a. The limit cycle is the maximum steady-state dynamic angle
of attack, a.

In most cases of practical interest, the limit cycle angle of attack is less
than 30°, so that the gallop amplitude may be found from

QY
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ILLUSTRATIVE EXAMPLE

The application of Eq. 10 is best illustrated by a typical example. The
square cross section is chosen for that purpose. It was already noted in Part
I (Richardson 1988) that the present method can easily account for effects
of Reynolds number. The illustrative example will bring out that point again.

The damping required function is Eq. 10. The right hand side is a function
of aerodynamic parameters, S, and Cp, and by Egs. 5 and 7, the §, is a
function of maximum lift coefficient, A,,, and lift reversal angle, a,. The
Bessel functions can be found from tables (Jahnke 1945) or calculated from
their series representation. If a personal computer is available, the latter course
will be the most efficient.

Here, the square section is considered at two Reynolds numbers, high and
low. The high Reynolds number is considered to be near 100,000 and the
€. max is put equal to unity. The lift reversal angle of attack is 38°. These
two parameters are sufficient to specify the describing function, S, (a) (see
Eq. 8). The low Reynolds number is considered to affect only the C, max,
and it is assumed to be 4,, = 2/3. The two cases are seen in Fig. 2. (High
R=A4, LowR = B)

The damping required to prevent galloping is given by the intercept on
the ordinate. Its numerical value is 3.05 (high Reynolds number) and 1.45
(low Reynolds number). The former may be compared with numerical values
of 2.8 found by Parkinson (1963). The first figure also agrees with the den
Hartog number found from Eq. 5, together with a drag coefficient of C, =
1.7.

The second figure at low Reynolds number is close to the numerical value
found by Dugundji (1976). Thus, more than twice as much damping is re-
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FiG. 2. Damping Required for Square Section—Initial Angle of Attack = 0

quired to prevent galloping at high Reynolds number. Further, the damping
required at small amplitude (@ = 0) agrees with the linear theory.

As the system damping decreases from its value (at ¢ = 0) while wind
speed is constant, there is an increase of the galloping amplitude, until at
zero damping, the abscissa axis intercept is found. For high Reynolds num-
ber the intercept 1s 0.52, while for low Reynolds number the intercept is
0.41. These are the “free-running gallop” amplitudes, so named because
they are limited only by the aerodynamic damping due to drag. In Part ]
(Richardson 1988), a numerical value of @ = 0.42 was found for the square
using a more exact describing function, §,.

It is readily seen that the buildup from zero amplitude to a maximum
amplitude occurs along the respective curves, beginning at the linear theory
intercept. To see this more clearly, refer to Fig. 3. The buildup is referred
to the wind speed ratio U/Uc, the Uc being the “critical wind speed” found
from the linear theory.
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FiG. 3. Angle of Attack Buildup for Square Section, o, = 0

If the system were equal in all other respects—except for C, max—the
U, of the low Reynolds number system would be nearly twice the U, of the
high Reynolds number system. In Fig. 3, both curves start from a common
point, but on a scale of wind speed the two curves would be separated along
the abscissa.

It is seen that the buildup is rapid, once the critical wind speed is reached.
However, while more than 50% of the “free-running” buildup is achieved
at 2 wind speed only 50% above the critical wind speed, the remaining 50%
of the buildup requires more than five times the critical wind speed.

For comparison, the approach to the “free-running asymptote” is shown
relative to test data of Parkinson (1963) and Novak (1976). The asymptote
for the “free-running” limit cycle at zero mechanical damping is found by
putting the left-hand side of Eq. 10 equal to zero and solving the resulting
transcendental equation

wd
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dy

The numerical value found for a is seen to be a function of both C; max =
A, and the lift reversal angle (= a), as well as the drag coefficient, Cp.

To the extent that certain shapes may be “more” or “less” subject to large
amplitudes of gallop, one could study Eq. 12 according to the various shape
characteristics of lift-and drag. Such a study would provide a basis for se-
lection among the various alternative shapes (Richardson 1986).

CoONCLUSION

The describing function method has been applied to single-degree-of-free-
dom systems with damping. The damping required to prevent gallop agrees
with the linear theory when the amplitude approaches zero. The same critical
wind speed is found. When the system damping approaches zero, or when
the wind speed exceeds the critical wind speed by a factor of four to five,

1950



the amphitude of gallop is the same as the “free-running™ amplitude limited
only by aerodynamic drag. A convenient approximate describing function is
infroduced, having only the following two parameters: (1) The maximum
(negative) lift coefficicnt; and (2) the angle of attack for lift reversal. The
effects of non-uniform aerodynamic force distribution remain to be consid-
ered, as do the effects of twisting. Since Reynolds number atfects lift, crit-
ical wind speed may vary by as much as a tfactor of twe on that account
alone. Wind stream turbulence effects remain to be considered. However,
lift and drag data having such effects included may be used within the frame-
work of the present theory.
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Appenpix I, NortaTion

The following symbols are used in this paper:

A = Reference area for aerodynamic coelficients;
a = maximum dynamic angle of attack;
A, = maximum static lift coefficient;

a, = lift reversal angle of attack;
C, = drag coefficicnt;

C, = lift coefficient;

C; max = maximum lift coefficient;

d = reference diameter;

E = energy per cycle;

f = frequency,

g = structural damping;

J. = Bessel function of first kind, of order f;
m = mass per unit length;

¢ = dynamic aerodynamic pressure;

;7
g = /2 pU"
S, = describing function for lift;
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time;

wind speed:

critical wind speed;

maximum gallop amplitude:
angle of attack, instantancous:
angle of attack, initial;

log decrement (=g);

relative density [=m/(1/2pd*];
air density; and

radian frequency (=w.).
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