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Summary
The prediction of fatigue damage in a transmission line

span is complicaled by the wide range of possible ice,
wind, frozen snow, time duration, and other variables.
Present state of the art will not allow a delerministic
prediction of fatigue damage, or fatigue life. The
mechanism responsible for galloping ilself is nol
subject to universal agreement, even afler 50 years of
research. Curiously, there is a better accord amwoung the
experts regarding the rool cause of galloping in bundles
than in singles.

Here, we usc an analysis and a gallop scenario that is a
represenlalive consensus, as applied to a quad bundle
gallop. The object is to predict worst case fatigue cycles,
and associates worst case loading of supporl structures.
The methodology is inclusive of (1) aerodynamic
loading based on actual ice shape wind tunel tests, (2)
gquad bundle dynamics, twisting plus gallop, (3)
structural loads on both suspension and strain lowers,
(4) special effects of torsional damping and other
paramelers. An illusirative example is used to bring out
the important conclusions where the example is
selecled from recent reported actual cases of severe
galloping in quad bundled line in the U.K.[19] and in
Japan[21]

Keywords
Galloping - tension variations - frequency - amplitude -
stability - damping - anti-galloping device -

1. Galloping loading and dynamic (ension

1) Frequency domain of mechanical tension oscillation.

Loads applied to_strain fowers :

Taken into account the anchoring tower
stifiness(K), tension variation for a whole section (total
length L) of Ns spans ( of length 1L.s) is given by (A=cross
section of one phase , E Youny modulus) :

AT =._.l_6._ (Al - ?_{]:) = Ky Al (Hooke's law) (1)
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In order to compulte length modification of the whole
section, an original approach is given by modal
decomposition (let's "k" be the number of the meode,
generally restricled to 1, 2 or 3) of the cable oscillation
in each spans and to deduce the length, by the
rectification formula.
If y(z,t) is the sag value at abscissa z and tlime t, let's
Y,k be the sag modal amplilude of the mode k on the

span 5; in such a way we obtain (see notation in
appendix) :

_ Ns modes 2 2
AT =K, z L (‘i‘L") sx- )"s,ko) ()]
s=1 k=1 *
with yg ko the modal sag value in static equilibrium
example 1
mode tonly one mode is concerned (one loop
galloping)
Ly :constant on cach span = L/Ns
: N
N 2 2
AT =K., _4"[":2( ¥s - ¥so) or (4)
: 3
. N
s E
AT = Kcv _4T z (2 Yeut ‘AY_-E:' ﬁ)'x
& (5)

withAy =y -y,
a simple formula from which we can deduce the

frequency domain of mechanical tension oscillation :

- for a dead-ended span the dominant frequency is
the frequency of the sag oscillation ( we neglect Ay,
before the sag )

- lor a multi-span section we generally abserve the
so called "up and down" galloping (one loop down,



one loop up, etc.. on following spans). In this case it
exists a full compensation (), Ay = D) , the second
5

order term only remains and the frequency will be
the double of sag oscillation.

- Due to the non-linear structure of the equalions
it is possible to show Lhat starting from a pure up and
down mode, an “in-phase" galloping ( each span
oscillates in phase ) will appear. Despite the fact that
its amplitude , superimposed to the up and down
mode, can be rather small {not visible at a first
glance), the corresponding tension variation is
generally not negligible. Finally it is a matter of facl
that tension oscillalion frequencies include bolh
upper values.

example 2 :
‘mode :only Lhe second mode is concerned (lwo
loops galloping)
Ls :constant on each span =L

The lension varialions are simply reduced to the

simple form (see (3)):
2

AT=K,,~

s[an (6}

Those considerations point out thal AT has the

same oscillation frequency as ;}.yf for the two loops
modes gatloping , Lhat means the double frequency
of the sag oscillation.

Important remark.

In the preceeding discussion we only detailed the
behaviour of lransverse wave oscillations, which are
clearly visible by any galloping spectator. But there is
another , somelimes dangerous one, which is only
visible on tension woscillogramms. This wave, the
longitudinal one, has a fundamental frequency higher
than usual [requency of galloping. But harmnonics of
tension related to verlical galloping may be tuned to the
longiludinal frequency. This fact has been recently
pointed out during a galloping in Belgium on april
1989. The danger is the proximity of this wave with the
first frequency of the anchoring lower. Fatigue cycles
can Lhen be occured during several hours at a frequency
about 2 Iz The Belgium recording clearly showed a
1.52 Hz (four times the tension frequency) of 5kN
amplitude which lasts during about 10 hours. This
oscillation occured during a two loops galloping mainly
active (about 3 m peak fo peak) on one span of the four
spans section (unspacered twin bundle 2 x 620 AMS)

The 1.52 Hz observed frequency can be explained by
longitudinal wave propagation all along the seclion
(1548 m). In fact the speed of this wave is aboul 5000
my/s following the relationship :

speed = ,\/ R
P

with

I e
frequency = 5 'J:
2L Y p (7)

p 1 volumic mass of the cable (Kg!n13)

(N/m?)
(m)

L : Young modulus
L : section span length

Taken into account the Villeroux test station
characteristics :
p=2700Kg/ m?
Em 8D 10'0 N/m?
= 1548 m
{four suspcnded spans of 361, 361,397,429 m)
Thus a very clear recommendation about section length

can be done in direct correlation with strain tower
frequency : avoid this resonance case.

==>»[requency= 1.51 Hz

Galloping numerical simulation

We have simulated (fig.1) a free two loops oscillation
(see fig.1) on the section of Villeroux. The soflware used
was SAMCEF-CABLE, written in the university of
Liege. The two loops were imposed only on the second
span of the section. The results shows very clearly (he
three observed frequencies The simulated
phenomenon fit quile accurately with the experimental
oscillogram.

Moreover mechanical tension variation of 5kN , close
to the recordings, has been obtained for a peak-to peak
amplitude ( at a quarter of the span 2) of 3 meters which
is exactly the measured amplitude ( owing to the film
taken during the observation).
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Fig.1 Two loops in the ser:ond span of Villeroux test
station.

Tension in the strain insulator at end of the seclion
(simulation by SAMCER)

A few words about loads on suspension strings
At the suspension point the slopes of both adjacent
spans are differenl so in spile of the fact that axial
tension is rather constant all along the section, the
suspension string exhibit {ension varialions.

The string displacemenl will oscillate at the same
frequency as the mechanical tension applied to strain
lowers. Let's nolice that we neglect inertial effect of the
chain.

As far as the mechanical tension in the string is
concerned, as we can see on the drawing, this value is
mainly concerned by the vertical component of the
mechanical tension in the cable. Thus both the
displacement  of the conductors and the tension in the
conductors will influence it . In a first approximalion
(see ig.2)

Tiso = Ty + AT (@, (1) + @) (8)

@) s depending of the medal shape at time t



thus Ty, exhibits always a frequency equal to those of

the displacements and frequencies
combination of AT and displacements .

which are

Fig.2 Suspension insulator siring at a given position
during galloping.

2) Amplitude of tens

The problem of galloping is a very complex one. The
problem which is still open is to know, for a given line,
the possible galloping modes and the respective
amplitudes.
The main difficulties are connected to ice shapes
prediction and corresponding aerodynamic coefficients
of drag,lift and moment. The wind action (amplilude
and orientation) and the characleristics of the line (
torsional stilfness, cte..) will fix initial conditions prone
to galloping or not. It is nowadays a matter of fact thal
on quad bundle , Den-ITartog mechanism is possible on
very thin ice shape facing the wind . Another easier
way, but arlilicial, to force Den-Hartog is to put a D
shape profile on the cables but this shape is completely
unprobabilistic in practice.
The most general case of quad bundle instability is
connected to the coupling belween torsion and verlical
frequency. Despite (he fact that a quad bundle has a very
high torsional stiffness, the natural resonance belween
those two movements make the bundle unstable for a
wide range of ice orientation facing the wind. The most
critical ice orientation is generally around 0° facing the
wind. The torsional characteristics of the phase has a
very big impact on the instability and on the amplitude.
So that it can be proved that it exisls a minimum and a
maximum wind speed for which galloping could occur.

ion variations

In order to compule lension oscillalion , we have to
know which kind of modes are possible {one, two, three
loops or mixed) and of which amplitude.

When Den-Hartog criterion is satisfied, a lot of modes
can be excited and any mixlure is possible. Provided
that wind spceed is high above critical speeds, wilh
torsional instabilities only the modes for which both
verlical and torsional [requencies ( evalualed in the
presence of wind and ice) will be close enough, will rise
to significant amplitude. It has been demonstrated [20]
that for quad bundle vertical and torsional first
frequency may significantly differ, this is not the case for
horizontal twin bundie. Thus for quad bundle, higher
modes (lwo and three loops) are generally more prone
to galloping.

3 Applications to quad bundle geommetry

A very interesting report published in CICRE 1974 [21]
mentionned a lot of experiments results on two quad
geommetry (4x410 ACSR , 4x950 ACSR ). Artificial D foil
has been inserted on the 4x410 bundle, so that many
occurences have been recorded. Only few cases with
natural icing on 4x950 have been recorded . The major
interest of a large set of records is to guess what could be
the extreme wvalues of tension wvariations and
amplitudes (with modal shape) for the given
geommetry, and a given kind of instability; very
probably a Den-Hartog one due lo particular arlilicial D
profile.

phase characteristics of the Kasatori-Yama line [21] : |

cross section 4x410)

mass per unit of length (including 12 profile) : 6.7 kg/m
extensional stiffness : FA = 123 109 N

mechanical tension (without wind) : 61500 N per chain
= 123000 N per phase

we have made the calculations for infinite anchoring
stiffness of the towers.

calculated sag : 6.5m
vertical modal analysis (2 spans of 312 and 319 m) :
one loop (up and down)
pseudo-one loop

two loops
three loops

02311z
0.36 Hz
0.46 and 0.47 Hz
0.68 and 0.70Hz

Observed amplitudes (peak-to-peak) :

two loops(dominant) + one loop : between 2 and 4 m ,
some occurences reached 5 m.

The superposition of one and two loops give the
impression of a travelling wave to the observer , bul il
is only an impression !!

Wind conditions : wind bigger than 12 m/s.
Corresponding tension variations :

slrain insulalors : 20000 to 74000 N per chain { 2 chains
per phase)
suspension insulator @ 10000 to 35000 N

Three loops : between 1.5 and 2 1,

Wind conditions : only for wind between 7 and 12 m/s
Corresponding lension varialions :

strain insulators : 20000 1o 35000 N per chain ( 2 chains
per phase)
suspension insulator : 15000 to 25000 N

Pseudo-one loop : between 0.5 and 1.5 m,

Wind conditions : only for wind between 7 and 18 m/s
Corresponding tension variations :

strain insulalors : 10000 to 45000 N per chain ( 2 chains
per phase)

suspension insulator : 2500 to 15000 N

Observations are limited lo wind speed between 0 and
25m/s



Assuming a Den Hartog galloping , it is possible to
deduce, from amplitude , frequency and wind speed, the
range of angle of allack : it is about 0.7 radians or 40°
peak to peak . Lel's notice that that value could have
been deduced more precisely from aerodynamic
properlies of the D type profile used , but we haven't
received any information about it

We know that , even with en-ITartog instabilities ,
there is a saturation phenomena , or evanescence when
the wind is increasing , due to quasi-static torsional
effect. This effect is very clear on the figures detailed in
[21].

A wery important conclusion can be drawn from the
numerous observations on the Kasatori-Yama line :
For the same aerodynamic profile (artificial D foil) and
the same wind speed (at about 14 m/s) il is possible to
have no galloping, galloping with "pseudo one loop" of
any amplitude between 0 and 1.5 m , galloping with
"pseudo+two loops" of any amplitude between 1.5 to
more than 5 meters, And the obvious corollary that
tension variations both in the strain insulators and in
the suspension insulators can be , in the same condition
of galloping, in a very large range between 2500 and
70000 Newtons. From another side the same galloping
amplitude (say 3 meters) can be obtained from very
different tension variations (between 20000 and 60000 N
for strain insulators and from 10000 to 30000 for
suspension insulators)

So it is not obvious at all that galloping ampliludes may
be deduced [rom tension recordings.

The physical reason of such big range of tension
variations for a given amplitude is connected to
possible mode "mixture". In fact the presence of the
pseudo-one loop in the two loops mode can have a
major influence in the lension variation as explained
earlier.

Some simulations will give to the reader some more
clear idea about this complex situation.

First simulation on the Kasatori-Yama line :
Den-Hartog galloping on the 4x410 ACSR, with 4m
amplitude for the two loops and 0.6 m amplitude for
the one loop superimposed, wind speed about 14 m/s.
Fig . 3 is the detailed iension oscillogramms both in
strain insulator and in suspension insulator. We have
joined the Fourier analysis of the same curves.
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Fig. 3 Computed tension oscillation and corresponding Fourier
analysis during mixed one (0.6m) and two (4 i) loops galloping. ona
4x410 ACSR.

Upper part : suspension string {initial value=21000 N)

Lower parl : anchoring string (initial value=123000 N)

The simulated results shows a peak to peak 60000N
(that means a 30000 N per chain) variation not
symmetrical to initial value. The frequencies are
mainly 0.36 Hz (pseudo-one loop) and 0.94 Hz ( the
double of the two loops oscillation at 0.47 Hz) . In the
suspension string a peak to peak 20000 N tension
variation rather symmetrically distribuled around
initial value (21000 N} with frequencies 0.36 Hz, 0.46 Hz
(dominant) and 0.92 I1z. The 0.46 Hz is the [requency of
cable two loops oscillation, the presence of which has
already been discussed.

Second simulation on the Kasatori-Yama line :
Den-Hartog galloping on the 4x410 ACSR, with 4m
amplitude for the two loops and 2 m amplitude for the
one loop superimposed,

wind speed about 14 m/s. Fig . 4 is the delailed tension
recordings both in strain insulator and in suspension
insulator. We have joined the Fourier analysis of the
same curves.
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Fig4 Computed tension oscillation and corresponding Fourier
analysis during mixed one (2 m) and two (4 m) loops galloping. on a
4x410 ACSR.

Upper part : suspension string (initial value=21000 N)

Lower part : anchoring string {initial value=123000 N)

The simulated results shows in the strain insulator a
peak lo peak 20000N (that means a 45000 N per chain)
variation not symmetrical to initial value. The
frequencies are mainly 0.36 Hz (pseudo-one loop) and
0.94 Flz ( the double of the two loops oscillation at 0.47
Hz) . In the suspension string a peak lo peak 30000 N

“tension variation rather symmetrically distributed

around initial value (21000 N) with frequencics 0.36
Iz{dominant) , 0.46 11z and 0.92 Hz. The 0.46 Hz is the
frequency of cable two loops oscillation, the presence of
which has already been discussed. As a complementary
information deduced from the simulation, the
displacement of the suspension string was about 12 em
peak to peak.

The two upper cases [it very well with the possible
cases experimenially measured on the Kasalori-Yama
line. :

Third simulation on the Kasatori-Yama line :
Den-Hartog galloping on the 4x950ACSR, with 3m
amplitude for the one loop (up and down) and 1 m

camplitude for the three loops superimposed, wind

speed about 7m/s. Fig . 5 is the detailed tension
oscillogramms both in strain insulator and in
suspension insulator. We have joined the Fourier
analysis of the same curves.



A frequency analysis of the section has been easily
performed to find out the following results :

one loop (up and down) 0.2 Hz
pseudo-one loop 0.47 Hz

two loops about 0.4 Hz
three loops aboul 0.6 Hz

The simulated results shows in the strain insulator a
peak to peak 90000N (that means a 45000 N per chain)
variation not symmelrical to initial value. The
frequencies are mainly 0.47 Hz (pseudo-one loop), 0.6
Hz (the threc loops oscillation) and 1.2 Hz ( the double
of the three loops oscillation) . In the suspension string
a peak to peak 20000 N tension variation nol
symmetrically distributed around initial value (41000
N) with the same frequencies as for the strain
insulators. As a complementary information deduced
from the simulation, the displacement of the
suspension string was about 30 cm peak to peak.
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Fig. 5 Computed tension oscillation and corresponding Fourier
analysis during mixed one (3m) and three (Im) loops galloping. ona
4x950 ACSR.

Upper part : suspension string (initial value=40700 N)
Lower parl : anchoring string (initial value=186000 N)

We could have simulated a lot of other cases, including
torsion-vertical instability. But for tension variation
discussion, the situation is sufficiently complex to limit
the number of features.

Whal lo say after those observations ! Everything is
possible?

As design engineer we need informations for phase
clearances and tower design. The best way is certainly to
find out a efficient antigalloping device, but it is not so

clear lo-day !l WmddamperR seems to be efficient
against Den-Hartog galloping because it causes a blow-
back angle pushing previously accreted ice in other
range of angle of attack than the Den-Tlartog one.
Detuning pendulum, if well calculated, will be of some

efficiency for galloping due to aerodynamic coupling

between vertical and torsional movement (the most
frequent one at our opinion, on bundle configuration),
air-flow spoiler, rotating clamp spacer, hoop spacers will
have some influence on ice accretion eccentricily and
could be efficient for parncnlal thin ice conditions,
Interphase spacer is an expensive possibility to solve the
clearance problem but not necessary the mechanical
tension oscillation problem which could be emphasised
by synchronising the tension variation in the three
phases...

As a lirst approximation one could evaluate by the

simple formula :
® N
AT = Kmr _J_']j? Z (2 ¥sot "\:"s} ‘5)":
. (@)
an order of amplitude of the maximum tension
oscillation. Tt is a matter of fact that it is very rare to
have galloping amplitude bigger than lhe sag (one
might get a probabilistic approach on this fact, if you
could get data) . Just to have an idea of the order of
magnitude we shall consider for tension oscillation a
40% variation of the sag on the pseudo-one loop mode!
(the most dangerous for tension variation, but not for
sag wvariation). So that lower design must ensure a
tension variation of about :
22
Ns 2
HL (10)
(K, the section stiffness define in (1} , Ns the number
of spans in the section, L. the section length, the

mean sag )

the frequency of which can be between the first mode
(up and down) and the third mode. This last being the
most dangerous for fatigue phenomena, but has
generally lower rate of tension variation.

It is obvious thal a reduction of tower anchoring
stiffness would be of very big help. The number of
suspended spans must be limited , but in practice it is
so. For section with more than 3 spans , il seems to be
reasonable to limit Ns to 3 in the calculation. Some
maore investigations could be done in that field in order
to refine sag oscillation and to adapt a correction factor
as a function of the location of the line in relation with
ice accretion characteristics.

With pendulums and supposing that amplitude will be
reduced of 75% , as mentioned by their inventors,
tension variation could be reduced of 30% to 60% as it
may be calculated from the above formula.

example of application :

For the dxd-HJ of the Kaaalhu line :

Kev=123 10 1/631=1.9 10* N/ Yas =65 m; Ns=‘2; L=3124319=631m
and AT=126000N (2x74000=148000 N abserved)

For the 4x950 of the Kasatori line :

Kev=285 107/631=4.5 10° N/my y =78 m; N=2; L=312+319=631m
and AT=400000N (2x78000=136000 N ubﬂcrw*d)

AT=K,, ——=

YSD

For suspension towers, moreover to the horizontal
wind force, galloping applied loads could be rather high
(but in quasi-vertical direction). With the same
supposition as for strain tower, it is about 10x(y /1. )xAT

that means aboul 20 to 30% of the variation loads
applied to strain towers.

example of application :

For the 4x410 of the Kasatari ling :

AT=0.3 x 126000 = 383000N (35000 N observed}

For the 4x950 of the Kasatori line «

AT=0.3x 400000 =1~

I This is also equivalent to a pure two loops oscillation of amplitude
equal to the sag on cach span.



11 Galloping amplitudes prediction

1} Gallop without twisting

The simplest form of gallop is single-degree-of-freedom,
and involyves only the vertical motion or slant motion
of the conductor. This is also known as Den Tlartog
type of galioping. Sometimes it could be accompanied
by twisting as well, but such twisting is not essential -
rather, it is incidental to the gallop. This type was
studied by Scruton [1], Parkinson [2], Novak [3],
Ratkowski [4]) Richardson [5-8], Lilien-Dubois [20] and
others. It is often characterized by a thin ice shape, and
having no means of twist coupling, -either
aerodynamically or inertially. In the United Stales, it is
the most common type of gallop, as it often has been
reported with little (a few millimeters) ice, [9].

The primary driving mechanism is lhe Den Harlog
mechanics, and may be expressed simply in terms of the
lift curve variation with the angle of attack of the wind.
A curve which approximates the variation of lift for
thin ice on a round conductor is :

CI, = —Am sin(ﬂ:amO]
Where,
CL = lift coelTicient

(1n

o =angle of attack
o, =angle of attack of lift reversal

Ap, = maximum lift coefficient.

The principle feature of the lift is negative slope at the
origin, or zero degree angle of attack. When it is
negative and exceeds the numerical value of the drag
coefficient (about unity), galloping is possible by the Den
Hartog theory, [10), [11]

Whether gallop will aclually occur depends upon
whether the wind speed is above the critical wind specd
or not. If not, no gallop will build up. If the wind speed
does exceed the critical wind speed, the gallop that
occurs depends upon how much it is actually exceeded.
Prediction of the numerical value for the critical wind
under the theory of Den Hartog was illustrated by
Parkinson (2], and by others. It depends upon the
mechanical damping, mass of the conductor, and
natural [requency of the span.

The build-up to full span gallop for two cases is
illustraled in Figs (6) and (7). In Fig (6), the peak angle
of attack (radians) is plotted against the wind speed.
There are two critical wind speeds, 5 M/s and 10M/s.
The conditions are similar to an example span that was
used by Richardson [12]. The higher critical speed may
have the same natural {requency with twice the
damping, or a damping which is the same, but a natural
frequency that is twice as much. The latter could occur
on suspension spans of the same line where one span
gallops with only one loop per span, and another span -
having the same span length, gallops in two loops.

Figure 6 illustrates an asymptolic approach to a value of
o = 0.5 peak dynamic angle of attack. Figure 7 shows
that peak-peak gallop amplitude increases with Lhe
wind speed. These resulls are obtained from the
Describing Function Method, Richavdson [7], [8]. 1lere,

the calculations are based on a span of quad bundle line
that is identified as the C.E.G.B. line, [12]..
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Fig. (6) Angle of attack vs. wind
- ¢ critical wind speed = 5m/s
------- : critical wind speed = 10m/s
Light ice shape, 10% thickness.
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Fig. (7) Galloping amplitude vs. wind

————:crilical wind speed = Sm/s
------- : critical wind speed = 10 m/s
Light ice shape, 10% thickness

2) Galloping with lwisting :

In bundled conduclors, there is often a twisting molion
as well as a vertical gallop motion. This is because a
bundle has the twisting natural frequency close to the
gallop nalural frequency. Coupling can occur between
the twist motion and the gallop motion. Coupling
mechanisms thal have been studied include both
inertial and aerodynamic forces and moments. Such
mechanisms have been the object of study by
Richardson [13], Nakamura [14], Hack [15], Lilien-Dubois
(16,201, Mukhopadhayay [17), Chadha [18], and others.
Earlier studies were limited to lhe theory of a coupled
linear system, while most recent studies have a major
emphasis on non-linear aecrodynamic force and
moment Describing Functions.

While bundled conduclors often do gallop by thin ice or
in accord with the Den Hartog theory, they may also be
subject to gallop when the lift curve slope is positive at
the origin, (zero initial angle of attack). Recently,
studies of ice shapes laken from lines which galloped
showed that the aerodynamic lift and moment was in
fact along a positive slope near a = 0, Tunstall [19).
From those dala an analytical model was developed
based on a Describing Function of lift and moment.
Richardson [12]. Those analytical models have been



extended to include a broader range of the parameters
for the C.E.G.B. line.

Some of the results are seen in Fig. (8) and Fig. (9). A
comparison between different levels of detuning is
made in Fig. (8) for a constant level of damping in the
gallop. The two detuning levels compared yield the
same build up of gallop amplitude. In Fig. (9) a
comparison of different damping values from zero to
15% illustrate the differences. When damping is low
gallop amplitudes increase at a faster rate with the wind
speed. Detuning is constant at 5% for all three cases. It
is noted that the practical achievement of 15% damping
in the gallop mode would be very difficult indeed.
Also, while such a high damping in the gallop mode
would eliminate the Den Hartog type of gallop, it docs
little to control bundle gallop along a positive Iift slope.

A careful study of the motion involving
gallop/twisting coupling shows that the energy input to
the motion must be due to positive lift acting in phase
with the gallop velocily. Since lift is a function of
dynamic angle of attack, lhe twist motion must be in
phase with gallop velocity and greater than the dynamic
angle of allack due (o gallop motion. This will be
illustrated later.
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Fig. (8) Galloping amplitude vs. wind

: 5% deluning
------- : 2,5% detuning
Damping : 15% gallop mode
Damping : 0 twist mode
C.E.G.B. ice shape.
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Fig. (9) Galloping amplitude vs. wind
t 15% damping
: 1,67% damping

0.0% damping
twist Damping = 0, & 5% detuning
C.E.G.B. ice shape.
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In mathematical terms, the angle of attack is :
of = B—GJYfUO {12}

© = dynamic twisl angle

y = peak amplitude of gallop
U, = wind speed
0]

= radian frequency of gallop.

For the purpose of illustration, we have assumed that

the w = 1.0 rad/s. The detuning of 5% means that the
twist natural frequency exceeds the gallop natural
frequency

Twisling motion :

The amounl of lwisling motion that a bundle
experiences is controlled by the total angle of attack.
This is so because the total angle of allack is made up of
two important components - (wisting and galloping;: see
Lq. (12). No gallop can occur unless energy is fed to the
gallop mode by the wind. This occurs when the
aerodynamic lift wave form has a component that is in
phase with gallop velocity., The basis of the Describing
Function Method is the determination of that
component from the static lift cocflicient curve,
Richardson [12], Lilien-Dubois [20]. When the dynamic
coupled equations of motion are solved, the result
takes into account acrodynamic lift, drag, and pitching
moment. The drag is the component that may always
be relied upon for damping. Here, we have neglecled all
pitch damping in spite of the fact that the twisting
motion may also be a source of damping.. Only gallop
damping has been included in the analysis.

Never-the-less, the pitch motion, or twisting, is the
primary cause of galloping when there is positive lift
slope. As already explained, when pitch/Ilwist motion
is in phase with gallop velocity, the maximum lift force
occurs when the gallop amplitude passes through zero
on the up stroke, and the minimum lift force occurs
when the gallop amplitude passes through zero on a
downward stroke. This action feeds energy into the
motion until equilibrium is reached with the damping
sources such as aerodynamic drag and gallop mode
damping. The balance of energy occurs at higher levels
as the wind speed increases. More galloping amplitude
is required at higher wind speeds lo reach equilibrium.

For the C.E.G.B. bundle the result is seen in Fig. (10)
with the variation of pitch angle (mid -span twist). An
effect is seen at low wind speeds that is related to a non-
linear Describing Function; namely, pitch angle
saturates at wind speeds above 7 melers per second. 1t is
apparent from previous graphs that this action does not
limit gallop amplitude. Rather, gallop amplitude grows
continuously. The pitch amplitude is large, the order of
70 degrees single peak or 140 degrees peak-to peak.

In Figure (11) the effect of increased /decreased damping
in the gallop mode is seen. The detuning is constant at
5%, while damping varies from zero to 5%. There is a
small effect of damping, but not enough lo cause a
scarch for a remedy in that direction. If deluning is
increased to 15%, while maintaining damping at 5%,
pitch motion is slightly modified at low values of the
wind speed. The same saluration level is reached at a
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Fig. (10) Pitch amplitude vs. wind
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Fig. (11) Pitch amplitude vs. wind

: Damping & Detuning = 5%
————— : Damping = 0, Detuning =5%
-------- : Damping = 5%, Detuning = 15%
C.E.C.B. ice shape.

higher wind speed; namely, 70 degrees peak for winds
above 8 meters per second.

Thus, neither changes in dampi ng nor changes in
detuning can produce much change in the pitch motion
of the C.E.G.B. quad bundled conductor.

Another comparison can be made now with results
now available from Figures (8) - (11), Knowing the
numerical values of the gallop ampliludes and (he
pitch amplitudes, ene may compute the kinelic energy
of each of these motions. The mass per unil length of
the bundle is 2 kg/m per subconductor., The quad
spacers are 305 melers per square side. The radian
frequency of the coupied mode is unity. The mode
shape is one loop per span. From these dala, we reach
the conclusion that a ratio of kinetic energy of gallop to
pitch motion can easily approach 150 to one.

Negative defuning :

So far only positive detuning ralios have been studied.
That is for the cases when the 1wist natural frequency is
greater than the gallop natural frequency. A detune of
5% means the ratio of twist to gallop frequencies is
equal to 1.05. Contrary to that, a negalive detuning of
minus 5% means that the ratio is equal to 0.95.

Negative detunings are commonly found in spans of
double dead-end configuration; not because the (wist
natural frequency is less than the one for a

corresponding suspension span, but because the gallop
natural frequency is greater than the corresponding
suspension span. This is the result of strong coupling
between the mechanical sirain energy of the cable and
that of the dead-end structure in which yoke plate
design plays a key role for negative detuning. Yoke plale
modelling should have to be thorecughly investigated.
In suspension spans the coupling is weak, and the
detuning in uvsually positive, being mainly due to added
torsion stiffness of the individual sub-conductor
assembly.

Experimentaly negative detunings seems to be more
dangerous because they also reflect a condition for
which the dynamic loadings are much larger than in a
corresponding suspension span. It places greater
demands on the strength of the structure and
hardware. An example of this effect was reported in a
C.LC.R.E. discussion in 1986, Akiyama, [22]. The cap
and ball insulators were found broken due to excessive
gallop loadings. The insulator tension variation (peak
to peak) was measured in excess of 40 kN, with fatigue
cycles greater than 1,000 times per year. This type of
damage may be lypical of large span bundled lines. It
points to isolaled occurance, on strain  insulator
assemblies, on double dead-end spans, and having
extreme stress loading a relatively few limes per year. It
is a latigue silualion best characterized as high
stress/low.cycle [aligue.

It was further explained by Akiyvama that a previously
tried remedy did not work; namely, the substitution of
towers having more electrical clearance between phases
so as o reduce line faults. The faults were indeed no
more, but the damage to insulators actually increased.
Thus, a lesson learned is that certain damage-prone
line configurations do exist in comparison to others
that are not so damage-prone, such as suspension spans
and the like.

While the negative detuning may characterize a danger
as lo gallop dynamic loading, it seems to have little to
distinguish its character as to amplitude build up as
seen in Tig. (12). Tlere, both positive and negalive
detuning is compared. Except for a slight difference in
the wind speed range of 5 melers per second, there is
little to distinguish between the two. Al the high
speeds the posilive detuning yields slightly higher
gallop amplitudes.
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Fig. (12) Gallop amplitude v. wind
¢ detuning = +5%

¢ detuning = -5%

Damping = 5% gallop mode only

C.E.G.I}. ice shape



However, the piltch angle does produce significant
differences over the whole range of wind speed, Fig.
(13). Positive deluning produces much greater
dynamic twisting than negative detuning up to 350%
greater. Further, as seen in Tig. (13) greater twist
motion will certainly torture hardware more severely,
leading lo a greater potentiel for fatigue damage.
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Fig. (13) Pitch amplitude vs.wind
------- t detuning = +5%
~——— 1 detuning = -5%
Pramping = 5% gallop mode only
C.E.C.B. ice chape.

Wind energy input

The galloping motion requires a continuous flow of
energy to suslain itself. The wind provides that energy.
Lift is the driving mechanism. Lift is intimately related
to the angle of atlack. In a bundled conductor, having
both gallop and twist motion, the angle of attack has
two parls, the parl due to twisting, and the part due to
gallop; sce the Equ. (12). The energy input from the
wind consists of two parts; the energy due to lift acting
on the gallop, and the energy due lo moment acting on
twist motion. Both components can be calculated if the
motion is known. The motion has already been found
for the illustration; namely, the C.E.G.B. quad bundled
conductor. The aerodynamic lift and moment - found
from wind tunnel tests - were expressed in terms of the
lift and moment Describing Function, [12]. A necessary
condilion for positive energy input o motion is that
forces (and moments) be in phase with the motion
itself. Here, we have already established that condition.
It remains only (o quantify the condition.

A parameter that often is used to quantify damping is
the log decremenl. It is most commonly used in single
degree of freedom systems to relate damping ratio or
loss faclor to the motion. It can be used in two degree of
[recdom systems, bul often the phenomenom of beating
between mode contributions limits ils practical use. A
qualitative use of the negative log decrement is useful
in systems which are subject to self-cxcitation. That is
the case here. A calculation of negative log decrement,
called log increment has been made for the two
components of motion. The log incremenl may be used
to estimate the relative input of energy per cycle. . Each
vibration cycle receives energy from the wind. The
amount ol energy received can be large or small as the
log increment is large or small. The following equation
may be used :

E =2xLixKE (13)

Where,
E = energy input per cycle
KE = maximum kinetic energy of motion
Li = log increment

For the gallop motion :

KE = 1/2x M x (@Y)? (14)
The mass M is the generalized mass of the whole span,
or one-half the lotal mass of the span if the mode shape
is approximately a cosine centered al mid-span.

For the C.E.G.B. span (355 meters), the mass M is 1420
kilograms. At a gallop amplitude of 5 moters the KE
is equal ta 17,750 newton-meters.

The energy input to the twist molion is far less. First,
the log increment is less than 10% owver the whole range
of wind speed. Second, the kinelic encrgy in the twist
molion is nearly two orders of magnitude less.

When the deluning is negative, the log increment for
the gallop is about the same, see Tig. (15). But the log
increment for the twist motion is much larger.
Hewever, in terms of energy input from the wind, the
result is about the same as for positive detuning. The
reason is because the kinctic energy of twist is even
smaller due to the reduced twist motion; sce Fig. (13).
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Fig. (14) Log-increment vs. wind

= gallop mode;
-====---= twist mode
Damping = 5%; deluning = 5%
C.E.G.B. ice shape
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Fig. (15) Log-increment vs. wind

—— = gallop mode;
~~~~~~~ = twist mode
Damping = 5%; deluning = -5%
C.E.G.B. ice shape



Sunmmary of CEGB line analysis :

The response of a quad-bundle span to thin ice is
characterized by a critical wind speed and a gradual
build up of gallop amplitude as the wind speed
increases above the critical value. The critical wind
speed depend upon damping in the gallop mode, the
natural frequency, and the mass of the iced conductor.
Sensitivity of the critical wind speed is dominated by
natural frequency when span length changes. Damping
and mass per unit length are not influenced by span
length appreciably.

Here, we have examined the response of a span of 355
meters length, having a thin crescent ice shape only ten
percent thick oriented with axis of symmetry to the
relative oncoming wind at zero angle of attack. The
span is chosen as a typical span from a C.E.G.B. span
which was known to have galloped. The second mode
having two loops per span starts at a higher wind; it
builds up in the same manner as the [irst, and in the
very high wind speed range reaches less than gallop
amplitude of the first mode. The illustrated results
apply equally as well to a single conduclor span, or a
twin bundle span, having the same damping, mass, and
frequencies for first and second modes. No lwisting
will occur for any of these cases. The reason for that is
because there is no coupling mechanism such as inertia
offset, or aerodynamic pitching moment. The natural
frequencies of twist and gallop remain unaffected by the
thin ice.

The gallop of the C.E.G.B. bundle with thick ice (about
equal to 0.3 kg/meter) develops into a coupled twisting
motion as well.  The ice shape produces an
aerodynamic pitching moment as well as an
aerodynamic lift force. This is the primary coupling
mechanism. The damping in the twist mode has been
neglected in the study while damping in the gallop
mode was varied. A significant effect on the gallop
amplitude due to damping was nol found, even for
damping up to 15% (loss factor). This corresponds to
damping ratio equal to 7,5%. Vertical damping has little
effect on the twist motion.

The detuning effect is also studied. Detuning has little
effect on the gallop mode response up to 20 m/s wind
speed. Detuning was varied from 2,5% lo 15%. The
highest detuning dclays the onset of high amplitude
twist motion from about 4 m/s to about 8 m/s wind
speed. Above that range of wind the twist motion
reaches a numerical value of 140 degrees peak-peak.
The motion of that magnitude is accompanied by a
gallop motion of nearly 10meters peak-peak.

Negative detuning is studied also. This is a case where
the twist natural frequency is not higher than the gallop
natural frequency. The negative detuning equal to -5%
corresponds lo a frequency ratio equal to 0.95. For that
case, the galloping motion is only slightly reduced.
However, the twist motion is only 40 degrees peak-
peak.

Anti-gallop remedics

From the previous illustralive examples, it is clear that
the Den-Hartog type of galloping is sensitive to
damping, natural frequency, and a type of aerodynamic

lift. A remedy that acts on one or more of these lactors
would be expected lo influence the gallop amplitude.
Devices thal are available commercially that act on one
or more of thaose [actors include : (1) T-2 conductors, (2)

air flow spoilers, (3) WindamperR devices, (4) AR
twister devices, (5) drag and cylinder dampers, (6)
Tanztilger type devices (Germany). The firsl five are
from the U.S.

For the coupled twisling type of gallop, all the above are
available, and, in addition, (7) a tuned damper - gallop
control damper - (Japan) plus (8) phase spacers, (9)
rotating clamp spacers (Germany) and (10) detuning
pendulums (Canada) . The last three items contribute
no damping, while all the former devices do. Finally,
(11) unbundling is a viable concept for bundled
conduclors.

Thus there are eleven remedies to choose from if one
wishes Lo limit gallop ampliludes,

The foregouing analyses have not included two other
parameters : (i) inertia offsef, and (ii) torsion mode
damping. The effect of inertia offset was examined
previously [12] bul further analysis is needed. The elfect
of torsion damping was also examined previously [20]
but further analysis is needed. Results will be included
in a future paper.

Conclusions :

(1) Calloping loads on both suspension and strain
towers can be rather high causing low frequency (0.15 to
1 Hz) variations up to 50% and more of the static
equilibrium wvaluc. These loads can cause severe
damage on the towers by faligue oscillations (torsional
and longitudinal).

(2) There is also a risk of fatigue if the length of the
section permits resonance between longitudinal waves
and firsl tower frequency (in lorsion or longitudinal)
(3) Tt is a very complex phenomenon, and the same
amplitude of galloping can give a wide range of lension

oscillation due lo mode mixture, especially for Den-
Hartog galloping.

(4) Up to now the most common way to estimate the
amplitude of galloping is lo record tension. According
lo point (3) this method seerns to be inaccurate.

(5) At a first glance pendulums could appear as a good
solution as long as Den-Hartog galloping is mot
concerned. But we must keep in mind that twisling
frequency is not a true structural parameter but may
exhibit sensible variations related to wind. In some case
penduhims could have a bad effect.

(6) The Den-Hartog galloping appears with very thin ice
coating.

(7) For other ice coaling the galloping mechanism is a
coupled action between torsion and vertical molion if
both torsional and vertical frequencies are close
together, as in bundled conductors.

RSEEII’IS to

(8) For Den-Hartog galloping, the windamper
be a true solution.
(9) For other galloping a torsional damper would

probably help to solve the problem.



REFERENCES :

[1] Scruton, Christofer, On the Wind Excited Oscillations
of Stack, Towers and Masts, paper n® 16, National
Physical T.aboratory, vol. I, Symposium June 26-28th,
1963, p. 798.

[2] Tarkinson, G.V., Aerolelastic Galloping in One
degree of freedom, Op. Cit. paper 23, p. 582.

[3] Novak, M. Galloping Oscillations of Prismatic
Structures, A.S.C.E. Journ. Engrg. Mech. Div., vol. 98,
Feb., 1972.

[4] Ratkowski, ].]., Experiments on Galloping Spans,
Trans, IEEE, vol. 82, pp.661-669.

[5] Richardson, A.S., The Time Line Method for
Assessing Galloping Fxpusure, 1EEE/PES Taper 82-WM-
083-4, New York, Jan/Feb, 1982, paper.

[6] Richardson, A.S., Some Effects of conductor
Twisting on Galloping, IEEE Sununer Power Meeting,
Vancouver, B.C,, 1979, Trans, 1EEE Power Apparatus &
Systems, PAG-99, 1980, p. 811.

[7]1 Richardson, A.S., Predicting Galloping Amplitudes,
A.B.CE, Journ. Engng. Mech., vol. n” 114, n® 4, Apr.
1988, p. 716.

[8] Richardson, A.S., Predicting Galloping Amplitudes-
I, ASCE, Journ. Engng. Mech., vol. n® 114, n® 11, nov.
1988, p. 1945,

19] Nigol, Clarke, C.J., Conductor Galloping & Control
Based on Torsional Mechanism, IKEE C-74 116-2,
Conference Paper, 1974.

10} Den Hartog, |.P., Transmission Line Vibration due
to Sleet, Trans. A.LLE.E., 1930, 49,

[11] Ottens, H.H., Some Theoretical Consideralions on
the Effect of Cable Torsion on Gallop NRL,
Netherlands, NRT. TR 81003 L, July 22, 1980.

[12] Richardson, A.S., Designing Quad Bundles Against
Galloping, ATM Study on Galloping, 10 March, 1989,
Univ. of Liege, Belgium.

[13] Richardson, A.S., Martuccelli ).R., Price Research
Study on Galloping of Electric Power Transmission
Tines, paper n°® 7, IBID ref. [2).

114] Nakamura, Y., Galloping of Bundled Power Line
Conductors, Journ., Sound & Vibration, 73 [3], pp. 363-
377, 1980.

(15] Hack , RK., A Wind Tunnel Investigation of Four
Conductor Models with Simulated lce, NLR TR 810761.,
Netherlands, NLR, 1981.

[16] Lilien, J.L., Dubois, H., Overhead Line Vertival
Galloping on Bundle Configurations, TEE Int. Conf. on
Overhead Line-Design, Construction Theory and
Practice, 28-30 Nov. 1988.

[17] Mukhopadhyay, V., The Galloping Oscillations of
Square Section Cable Suspended in a Smooth Wind
Flow, Jour. Ind. Acrodyn. 5 [1979] 35-51, Amsterdam,
Printed in the Netherlands.

[18] Chadha, J., A Dynamic Model Investigation IEEE
Winter Power Meeling, Paper 74 59-2, 1974.

[19] Tunstall, M., Koutselos, L.T., Further Studies of the
Galloping Instability & Natural lce Accretions on
Overhead Line Conductors, 4th Int. Conf. on Atm. lcing
& Struc., Paris, 1988.

[20] J.L. Lilien, H. Dubois, F. Dal Maso, Ceneral
mathematical formulation for overhead line galloping,.
AlIM study day on galloping, march 10, 1989.

[21] K. Anjo et al. Une étude expérimentale du galop des
faisccaux de conducteurs de lignes aériennes de
transport importantes a la station d'essais de Kasatori-
Yama. CICRE 22-04, 1974

[22] Akiyama T., Discussion Gr. 22, CLG.R.E,, 1986, p.70

Nofations
Ys k magnitude of mode k on span s

3 . knz
Y= E sk 8ing = (z the abseissa [0,L,])
k=1 s

Ye ko = Yg i for static equilibrium (zero for k even)
T Instantaneous lension in one phase (N)
To = initial static value
m  total mass of one phase per unit of length.(kg/m)

AT  tension variation in one phase (IN)
Al length variation of one phase {m}

f‘”l+ dé—f l+—i}-y— dz
Z

EA/L extensional stiffness of one phase (N/m)
K anchoring tower longitudinal stiffness [N/m]
L total length of the section (Ng spans) [m] :

N,
L= I,
i=1

Koy seclion equivalent stiffness [N/m]
I L 2

K. EA K
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